STATE OF THE ART PAPER
The role of matrix metalloproteinases in cancer progression, in particular metastasis
 
More details
Hide details
 
Submission date: 2018-03-28
 
 
Final revision date: 2018-07-25
 
 
Acceptance date: 2018-09-09
 
 
Publication date: 2018-12-16
 
 
Arch Med Sci Civil Dis 2018;3(1):124-146
 
KEYWORDS
TOPICS
ABSTRACT
Cancer is a major global health concern, and is one of the leading causes of mortality in many developed countries including Australia. Most of the morbidity and mortality associated with cancer can be linked to the process of metastasis, whereby malignant cancerous cells move from their primary site to establish secondary tumours at a distant location. The capacity of cells to migrate through a tissue depends on their ability to degrade the extracellular matrix. Matrix metalloproteinases are the main protease enzymes involved in the degradation of the extracellular matrix. The release of these enzymes is important, not just for normal immune and inflammatory processes, but also for cancer.
 
REFERENCES (262)
1.
Randall D, Degenhardt L, Vajdic CM, et al. Increasing cancer mortality among opioid-dependent persons in Australia: a new public health challenge for a disadvantaged population. Aust N Z J Public Health 2011; 35: 220-5.
 
2.
Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136: E359-86.
 
3.
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA: Cancer J Clin 2015; 65: 87-108.
 
4.
Cotran R, Kumar V, Collins T. Robbins Pathologic Basis of Disease. 6th ed. 1999; 86.
 
5.
DiGiovanni J. Multistage carcinogenesis in mouse skin. Pharmacol Ther 1992; 54: 63-128.
 
6.
Resende RR, Ulrich H, SpringerLink. Trends in Stem Cell Proliferation and Cancer Research. S.l.: Springer Netherlands 2013.
 
7.
Koten JW, Neijt JP, Zonnenberg BA, Den Otter W. The difference between benign and malignant tumours explained with the 4-mutation paradigm for carcinogenesis. Anticancer Res 1993; 13: 1179-82.
 
8.
Berggoetz B. Benign tumors should just be left alone, right? Indianapolis Star 2007.
 
9.
Neoplasms; Research from Roosevelt Hospital broadens understanding of neoplasms. Clinical Oncology Week 2009.
 
10.
Bennis M, Tiret E, Matzel KE, et al. Malignant Tumours. Springer, Berlin Heidelberg 2008; 193-234.
 
11.
de Krijger I, Mekenkamp LJM, Punt CJA, Nagtegaal ID. MicroRNAs in colorectal cancer metastasis. J Pathol 2011; 224: 438-47.
 
12.
Dudjak LA. Cancer metastasis. Semin Oncol Nurs 1992; 8: 40-50.
 
13.
Fidler IJ. The organ microenvironment and cancer metastasis. Differantation 2002; 70: 498-505.
 
14.
Fidler IJ, Kripke ML. The challenge of targeting metastasis. Cancer Metastasis Rev 2015; 34: 635-41.
 
15.
Labelle M, Hynes RO. The initial hours of metastasis: the importance of cooperative host-tumor cell interactions during hematogenous dissemination. Cancer Discov 2012; 2: 1091-9.
 
16.
Nicolson GL. Cancer metastasis. BBA Rev Cancer 1982; 695: 113-76.
 
17.
Reymond N, d’Água BB, Ridley AJ. Crossing the endothelial barrier during metastasis. Nat Rev Cancer 2013; 13: 858-70.
 
18.
Shi M, Liu D, Duan H, Shen B, Guo N. Metastasis-related miRNAs, active players in breast cancer invasion, and metastasis. Cancer Metastasis Rev 2010; 29: 785-99.
 
19.
Gao P, Xing AY, Zhou GY, et al. The molecular mechanism of microRNA-145 to suppress invasion-metastasis cascade in gastric cancer. Oncogene 2013; 32: 491-501.
 
20.
Bos PD, Massagué J, Nguyen DX. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 2009; 9: 274-84.
 
21.
Fidler IJ. Timeline: the pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 2003; 3: 453-8.
 
22.
Fokas E, Engenhart-Cabillic R, Daniilidis K, Rose F. An HX. Metastasis: the seed and soil theory gains identity. Cancer Metastasis Rev 2007; 26: 705-15.
 
23.
Langley RR, Fidler IJ. The seed and soil hypothesis revisited – the role of tumor – stroma interactions in metastasis to different organs. Int J Cancer 2011; 128: 2527-35.
 
24.
Lisanti MP, Martinez-Outschoorn UE, Lin Z, et al. Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis: the seed and soil also needs “fertilizer”. Cell Cycle 2011; 10: 2440-9.
 
25.
Bosman FT, Meade-Tollin LC, Noorden CJF. Metastasis. Am Sci 1998; 86: 130.
 
26.
Dan W. Metastasis. New Coin 2011; 47: 19.
 
27.
Oppenheimer SB. Cellular basis of cancer metastasis: a review of fundamentals and new advances. Acta Histochem 2006; 108: 327-34.
 
28.
Cornelis JFVN, Meade-Tollin LC, Bosman FT. Metastasis: the spread of cancer cells to distant sites implies a complex series of cellular abnormalities caused, in part, by genetic aberrations. Am Sci 1998; 86: 130-41.
 
29.
Noorden vCJF, Meade-Tollin LC, Bosman FT. Metastasis. Am Sci 1998; 86: 130-41.
 
30.
Senger DR, Davis GE. Angiogenesis. Cold Spring Harb Perspect Biol 2011; 3: a005090.
 
31.
Zhao Q, Li Z. Angiogenesis. BioMed Res Int 2015; 2015: 135861-2.
 
32.
Wittekind C, Neid M. Cancer invasion and metastasis. Oncology 2005; 69 Suppl 1: 14-6.
 
33.
Toh Y, Nicolson GL. Identification and characterization of metastasis-associated gene/protein 1 (MTA1). Cancer Metastasis Rev 2014; 33: 837-42.
 
34.
Wojtukiewicz MZ, Hempel D, Sierko E, Tucker SC, Honn KV. Protease-activated receptors (PARs) – biology and role in cancer invasion and metastasis. Cancer Metastasis Rev 2015; 34: 775-96.
 
35.
Wolczyk D, Zaremba-Czogalla M, Hryniewicz-Jankowska A, et al. TNF-alpha promotes breast cancer cell migration and enhances the concentration of membrane-associated proteases in lipid rafts. Cell Oncol 2016; 39: 353-63.
 
36.
Zhu L, Yang S, He S, et al. Downregulation of ubiquitin-specific protease 14 (USP14) inhibits breast cancer cell proliferation and metastasis, but promotes apoptosis. J Mol Histol 2016; 47: 69-80.
 
37.
Finger EC, Giaccia AJ. Hypoxia, inflammation, and the tumor microenvironment in metastatic disease. Cancer Metastasis Rev 2010; 29: 285-93.
 
38.
Sledge GW, Mina LA. Rethinking the metastatic cascade as a therapeutic target. Nat Rev Clin Oncol 2011; 8: 325-32.
 
39.
Geiger TR, Peeper DS. Metastasis mechanisms. Biochim Biophys Acta 2009; 1796: 293-308.
 
40.
Hoon DSB, Ferris R, Tanaka R, Chong KK, Alix-Panabières C, Pantel K. Molecular mechanisms of metastasis. J Surg Oncol 2011; 103: 508-17.
 
41.
Brooks SA, Lomax-Browne HJ, Carter TM, Kinch CE, Hall DMS. Molecular interactions in cancer cell metastasis. Acta Histochem 2010; 112: 3-25.
 
42.
Liao D, Johnson RS. Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev 2007; 26: 281-90.
 
43.
Fox SB, Harris AL. Histological quantitation of tumour angiogenesis. APMIS 2004; 112: 413-30.
 
44.
Valero C, Javierre E, García-Aznar JM, Gómez-Benito MJ. Numerical modelling of the angiogenesis process in wound contraction. Biomech Modeling Mechanobiol 2013; 12: 349-60.
 
45.
Goh V. Functional imaging of colorectal cancer angiogenesis. Lancet Oncol 2007; 8: 245-55.
 
46.
Sacewicz I, Wiktorska M, Wysocki T, Niewiarowska J. Mechanisms of cancer angiogenesis. Postep Hig Med Dośw 2009; 63: 159-68.
 
47.
Garmy-Susini B, Varner JA. Roles of integrins in tumor angiogenesis and lymphangiogenesis. Lymph Res Biol 2008; 6: 155-63.
 
48.
Varner JA, Avraamides CJ, Garmy-Susini B. Integrins in angiogenesis and lymphangiogenesis. Nature Rev Cancer 2008; 8: 604-17.
 
49.
Papetti M, Herman IM. Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol 2002; 282: C947-70.
 
50.
Otrock ZK, Mahfouz RAR, Makarem JA, Shamseddine AI. Understanding the biology of angiogenesis: Review of the most important molecular mechanisms. Blood Cells Mol Dis 2007; 39: 212-20.
 
51.
Strell C, Entschladen F. Extravasation of leukocytes in comparison to tumor cells. Cell Commun Signal 2008; 6: 10.
 
52.
Hazan RB, Qiao RUI, Keren R, Badano I, Suyama K. Cadherin switch in tumor progression. Ann N Y Acad Sci 2004; 1014: 155-63.
 
53.
Jeanes A, Gottardi CJ, Yap AS. Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 2008; 27: 6920-9.
 
54.
Niessen CM, Leckband D, Yap AS. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev 2011; 91: 691-731.
 
55.
Tsanou E, Peschos D, Batistatou A, Charalabopoulos A, Charalabopoulos K. The E-cadherin adhesion molecule and colorectal cancer. A global literature approach. Anticancer Res 2008; 28 (6A): 3815.
 
56.
Christofori G, Wilgenbus P, Perl AK, Dahl U, Semb H. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 1998; 392: 190-3.
 
57.
Zheng Z, Pan J, Chu B, Wong YC, Cheung ALM, Tsao SW. Downregulation and abnormal expression of E-cadherin and beta-catenin in nasopharyngeal carcinoma: close association with advanced disease stage and lymph node metastasis. Human Pathol 1999; 30: 458-66.
 
58.
Blok P, Craanen ME, Dekker W, Tytgat GNJ. Loss of E-cadherin expression in early gastric cancer. Histopathology 1999; 34: 410-5.
 
59.
Kuniyasu H, Ellis LM, Evans DB, et al. Relative expression of e-cadherin and type iv collagenase genes predicts disease outcome in patients with resectable pancreatic carcinoma. Clin Cancer Res 1999; 5: 25-33.
 
60.
Sulzer MA, Leers MP, van Noord JA, Bollen EC, Theunissen PH. Reduced E-cadherin expression is associated with increased lymph node metastasis and unfavorable prognosis in non-small cell lung cancer. Am J Respir Crit Care Med 1998; 157: 1319.
 
61.
Slaton JW, Inoue K, Perrotte P, et al. Expression levels of genes that regulate metastasis and angiogenesis correlate with advanced pathological stage of renal cell carcinoma. Am J Pathol 2001; 158: 735-43.
 
62.
Wijnhoven B, Dinjens W, Pignatelli M. E-cadherin-catenin cell-cell adhesion complex and human cancer. Br J Surg 2000; 87: 992-1005.
 
63.
Hazan RB, Phillips GR, Qiao RF, Norton L, Aaronson SA. Exogenous expression of n-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol 2000; 148: 779-90.
 
64.
Chiang SPH, Cabrera RM, Segall JE. Tumor cell intravasation. Am J Physiol Cell Physiol 2016; 311: C1-14.
 
65.
Wyckoff JB, Jones JG, Condeelis JS, Segall JE. A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res 2000; 60: 2504-11.
 
66.
Wolf K, Friedl P. Tumour-cell invasion and migration: diversity and escape mechanisms. Nature Rev Cancer 2003; 3: 362-74.
 
67.
McCarthy JB, Furcht LT. Laminin and fibronectin promote the haptotactic migration of b16 mouse melanoma cells in vitro. J Cell Biol 1984; 98: 1474-80.
 
68.
Dvorak HF, Sioussat TM, Brown LF, et al. Distribution of vascular permeability factor (vascular endothelial.
 
69.
growth factor) in tumors: concentration in tumor blood vessels. J Exp Med 1991; 174: 1275-8.
 
70.
Bockhorn M. Active versus passive mechanisms in metastasis: do cancer cells crawl into vessels, or are they pushed? Lancet Oncol 2007; 8: 444-8.
 
71.
Bendas G, Borsig L. Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins. Int J Cell Biol 2012; 2012: 676731-10.
 
72.
Gout S, Tremblay PL, Huot J. Selectins and selectin ligands in extravasation of cancer cells and organ selectivity of metastasis. Clin Exp Metastasis 2008; 25: 335-44.
 
73.
Klemke M, Weschenfelder T, Konstandin MH, Samstag Y. High affinity interaction of integrin 41 (VLA-4) and vascular cell adhesion molecule 1 (VCAM-1) enhances migration of human melanoma cells across activated endothelial cell layers. J Cell Physiol 2007; 212: 368-74.
 
74.
Stroka KM, Konstantopoulos K. Physical biology in cancer. 4. Physical cues guide tumor cell adhesion and migration. Am J Physiol Cell Physiol 2014; 306: C98-109.
 
75.
Gassmann P, Haier J. The tumor cell-host organ interface in the early onset of metastatic organ colonisation. Clin Exp Metastasis 2008; 25: 171-81.
 
76.
Glinskii OV, Huxley VH, Glinsky GV, Pienta KJ, Raz A, Glinsky VV. Mechanical entrapment is insufficient and intercellular adhesion is essential for metastatic cell arrest in distant organs. Neoplasia 2005; 7: 522-7.
 
77.
Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer 2009; 9: 239-52.
 
78.
Koop S, Schmidt EE, MacDonald IC, et al. Independence of metastatic ability and extravasation: metastatic RAS-transformed and control fibroblasts extravasate equally well. Proc Natl Acad Sci USA 1996; 93: 11080-4.
 
79.
Fidler IJ. Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125 I-5-iodo-2’-deoxyuridine. J Natl Cancer Inst 1970; 45: 773-82.
 
80.
Geho DH, Bandle RW, Clair T, Liotta LA. Physiological mechanisms of tumor-cell invasion and migration. Physiology 2005; 20: 194-200.
 
81.
Guo W, Giancotti FG. Integrin signalling during tumour progression. Nat Rev Mol Cell Biol 2004; 5: 816-26.
 
82.
Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nature Med 2013; 19: 1423-37.
 
83.
E-P-selectins and colon carcinoma metastasis: first evidence for their crucial role in a clinically relevant model of spontaneous metastasis formation in the lung. Br J Cancer 2010; 102: 602-9.
 
84.
Hiratsuka S, Goel S, Kamoun WS, et al. Endothelial focal adhesion kinase mediates cancer cell homing to discrete regions of the lungs via E-selectin up-regulation. Proc Natl Acad Sci USA 2011; 108: 3725-30.
 
85.
Auguste P, Fallavollita L, Wang N, Burnier J, Bikfalvi A, Brodt P. The host inflammatory response promotes liver metastasis by increasing tumor cell arrest and extravasation. Am J Pathol 2007; 170: 1781-92.
 
86.
Eichbaum C, Meyer AS, Wang N, et al. Breast cancer cell-derived cytokines, macrophages and cell adhesion: implications for metastasis. Anticancer Res 2011; 31: 3219-27.
 
87.
Kawamura YI, Adachi Y, Curiel DT, et al. Therapeutic adenoviral gene transfer of a glycosyltransferase for prevention of peritoneal dissemination and metastasis of gastric cancer. Cancer Gene Therapy 2014; 21: 427-33.
 
88.
Borsig L, Wong R, Feramisco J, Nadeau DR, Varki NM, Varki A. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci USA 2001; 98: 3352-7.
 
89.
Läubli H, Stevenson JL, Varki A, Varki NM, Borsig L. L-selectin facilitation of metastasis involves temporal induction of Fut7-dependent ligands at sites of tumor cell arrest. Cancer Res 2006; 66: 1536-42.
 
90.
Miles FL, Pruitt FL, van Golen KL, Cooper CR. Stepping out of the flow: capillary extravasation in cancer metastasis. Clin Exp Metastasis 2008; 25: 305-24.
 
91.
Strell C, Lang K, Niggemann B, Zaenker KS, Entschladen F. Surface molecules regulating rolling and adhesion to endothelium of neutrophil granulocytes and MDA-MB-468 breast carcinoma cells and their interaction. Cell Mol Life Sci 2007; 64: 3306-16.
 
92.
Balkwill F. Cancer and the chemokine network. Nat Rev Cancer 2004; 4: 540-50.
 
93.
Vandercappellen J, Van Damme J, Struyf S. The role of CXC chemokines and their receptors in cancer. Cancer Lett 2008; 267: 226-44.
 
94.
Buchanan ME, Murphy E, Wagner SN, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001; 410: 50-6.
 
95.
Jamieson WL, Shimizu S, D’Ambrosio JA, Meucci O, Fatatis A. CX3CR1 is expressed by prostate epithelial cells and androgens regulate the levels of CX3CL1/fractalkine in the bone marrow: potential role in prostate cancer bone tropism. Cancer Res 2008; 68; 1715-22.
 
96.
Shulby SA, Dolloff NG, Stearns ME, Meucci O, Fatatis A. CX3CR1-fractalkine expression regulates cellular mechanisms involved in adhesion, migration, and survival of human prostate cancer cells. Cancer Res 2004; 64: 4693-8.
 
97.
Drell Iv TL, Joseph J, Lang K, Niggemann B, Zaenker KS, Entschladen F. Effects of neurotransmitters on the chemokinesis and chemotaxis of mda-mb-468 human breast carcinoma cells. Breast Cancer Res Treat 2003; 80: 63-70.
 
98.
Entschladen F, Palm D, Niggemann B, Zaenker KS. The cancer’s nervous tooth: considering the neuronal crosstalk within tumors. Semin Cancer Biol 2008; 18: 171-5.
 
99.
Garofalo A, Chirivi RG, Foglieni C, et al. Involvement of the very late antigen 4 integrin on melanoma in interleukin 1-augmented experimental metastases. Cancer Res 1995; 55: 414-9.
 
100.
Okahara H, Yagita H, Miyake K, Okumura K. Involvement of very late activation antigen 4 (VLA-4) and vascular cell adhesion molecule 1 (VCAM-1) in tumor necrosis factor alpha enhancement of experimental metastasis. Cancer Res 1994; 54: 3233.
 
101.
Nangia-Makker P, Sarvis R, Visscher DW, Bailey-Penrod J, Raz A, Sarkar FH. Galectin-3 and L1 retrotransposons in human breast carcinomas. Breast Cancer Res Treat 1998; 49: 171-83.
 
102.
Mierke CT, Zitterbart DP, Kollmannsberger P, et al. Breakdown of the endothelial barrier function in tumor cell transmigration. Biophys J 2008; 94: 2832-46.
 
103.
Couture P, Paradis-Massie J, Oualha N, Thibault G. Adhesion and transcellular migration of neutrophils and B lymphocytes on fibroblasts. Exp Cell Res 2009; 315: 2192-206.
 
104.
Garrido-Urbani S, Bradfield PF, Lee BPL, Imhof BA. Vascular and epithelial junctions: a barrier for leucocyte migration. Biochem Soc Trans 2008; 36: 203.
 
105.
Petri B, Bixel MG. Molecular events during leukocyte diapedesis. FEBS J 2006; 273: 4399-407.
 
106.
Voura EB, Sandig M, Siu CH. Cell-cell interactions during transendothelial migration of tumor cells. Microsc Res Tech 1998; 43: 265-75.
 
107.
Qi J, Chen N, Wang J, Siu CH. Transendothelial migration of melanoma cells involves N-cadherin-mediated adhesion and activation of the beta-catenin signaling pathway. Mol Biol Cell 2005; 16: 4386-97.
 
108.
Brandt B, Heyder C, Gloria-Maercker E, et al. 3D-extravasation model – selection of highly motile and metastatic cancer cells. Semin Cancer Biol 2005; 15: 387-95.
 
109.
Friedl PHA, Weigelin B. Interstitial leukocyte migration and immune function. Nat Immunol 2008; 9: 960-9.
 
110.
Leppert D, Waubant E, Galardy R, Bunnett NW, Hauser SL. T cell gelatinases mediate basement membrane transmigration in vitro. J Immunol 1995; 154: 4379.
 
111.
Kobayashi H, Boelte K, Lin PC. Endothelial cell adhesion molecules and cancer progression. Curr Med Chem 2007; 14: 377-86.
 
112.
Li DM, Feng YM. Signaling mechanism of cell adhesion molecules in breast cancer metastasis: potential therapeutic targets. Breast Cancer Res Treat 2011; 128: 7-21.
 
113.
Yasmin-Karim S, King MR, Messing EM, Lee YF. E-selectin ligand-1 controls circulating prostate cancer cell rolling/adhesion and metastasis. Oncotarget 2014; 5: 12097-110.
 
114.
Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 2010; 10: 9-22.
 
115.
Läubli H, Borsig L. Selectins promote tumor metastasis. Semin Cancer Biol 2010; 20: 169-77.
 
116.
Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002; 110: 673-87.
 
117.
Lipscomb EA, Dugan AS, Rabinovitz I, Mercurio AM. Use of RNA interference to inhibit integrin (alpha6beta4)-mediated invasion and migration of breast carcinoma cells. Clin Exp Metastasis 2003; 20: 569-76.
 
118.
Dedhar S, Saulnier R, Nagle R, Overall CM. Specific alterations in the expression of alpha 3 beta 1 and alpha 6 beta 4 integrins in highly invasive and metastatic variants of human prostate carcinoma cells selected by in vitro invasion through reconstituted basement membrane. Clin Exp Metastasis 1993; 11: 391-400.
 
119.
Pouliot N, Nice EC, Burgess AW. Laminin-10 mediates basal and EGF-stimulated motility of human colon carcinoma cells via alpha(3)beta(1) and alpha(6)beta(4) integrins. Exp Cell Res 2001; 266: 1-10.
 
120.
Natali PG, Nicotra MR, Bartolazzi A, Cavaliere R, Bigotti A. Integrin expression in cutaneous malignant melanoma: association of the alpha 3/beta 1 heterodimer with tumor progression. Int J Cancer 1993; 54: 68-72.
 
121.
Hieken TJ, Farolan M, Ronan SG, Shilkaitis A, Wild L, Das Gupta TK. beta3 integrin expression in melanoma predicts subsequent metastasis. J Surg Res 1996; 63: 169-73.
 
122.
Felding-Habermann B, O’Toole TE, Smith JW, et al. Integrin activation controls metastasis in human breast cancer. Proc Natl Acad Sci USA 2001; 98: 1853-8.
 
123.
Uings IJ, Farrow SN. Cell receptors and cell signalling. Mol Pathol 2000; 53: 295-9.
 
124.
Khatib AM, Kontogiannea M, Fallavollita L, Jamison B, Meterissian S, Brodt P. Rapid induction of cytokine and E-selectin expression in the liver in response to metastatic tumor cells. Cancer Res 1999; 59: 1356-61.
 
125.
Kansas GS. Selectins and their ligands: current concepts and controversies. Blood 1996; 88: 3259-87.
 
126.
Kaas Q, Ehrenmann F, Lefranc MP. IG, TR and IgSF, MHC and MhcSF: what do we learn from the IMGT Colliers de Perles? Brief Funct Genom Proteom 2007; 6: 253-64.
 
127.
Lee G, Zhu M, Ge B, Potzold S. Widespread expressions of immunoglobulin superfamily proteins in cancer cells. Cancer Immunol Immunother 2012; 61: 89-99.
 
128.
Touvier M, Fezeu L, Ahluwalia N, et al. Pre-diagnostic levels of adiponectin and soluble vascular cell adhesion molecule-1 are associated with colorectal cancer risk. World J Gastroenterol 2012; 18: 2805-12.
 
129.
Regidor PA, Callies R, Regidor M, Schindler AE. Expression of the cell adhesion molecules ICAM-1 and VCAM-1 in the cytosol of breast cancer tissue, benign breast tissue and corresponding sera. Eur J Gynaecol Oncol 1998; 19: 377-83.
 
130.
Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002; 2: 563-72.
 
131.
Chakrabarti S, Patel KD. Matrix metalloproteinase-2 (MMP-2) and MMP-9 in pulmonary pathology. Exp Lung Res 2005; 31: 599-621.
 
132.
Ribatti D, Mangialardi G, Vacca A. Stephen Paget and the ‘seed and soil’ theory of metastatic dissemination. Clin Exp Med 2006; 6: 145-9.
 
133.
Demaria S, Pikarsky E, Karin M, et al. Cancer and inflammation: promise for biologic therapy. J Immunother 2010; 33: 335-51.
 
134.
Guarino V, Castellone MD, Avilla E, Melillo RM. Thyroid cancer and inflammation. Mol Cell Endocrinol 2010; 321: 94-102.
 
135.
Hussain SP, Harris CC. Inflammation and cancer: an ancient link with novel potentials. Int J Cancer 2007; 121: 2373-80.
 
136.
Mantovani A, Pierotti MA. Cancer and inflammation: a complex relationship. Cancer Lett 2008; 267: 180-1.
 
137.
Riegler G, Tartaglione MT, Bossa F. Ulcerative colitis and cancer. Tech Coloproctol 1999; 3: 189-91.
 
138.
Weiss U. Inflammation. Nature 2002; 420: 845.
 
139.
Weiss U. Inflammation. Nature 2008; 454: 427.
 
140.
Schulte D, Vestweber D, Zarbock A, et al. Stabilizing the VE-cadherin-catenin complex blocks leukocyte extravasation and vascular permeability. EMBO J 2011; 30: 4157-70.
 
141.
Wang S, Cao C, Chen Z, et al. Pericytes regulate vascular basement membrane remodeling and govern neutrophil extravasation during inflammation. PLoS One 2012; 7: e45499.
 
142.
Zuchtriegel G, Uhl B, Puhr-Westerheide D, et al. Platelets guide leukocytes to their sites of extravasation. PLoS Biol 2016; 14: e1002459.
 
143.
Wright RD, Cooper D. Glycobiology of leukocyte trafficking in inflammation. Glycobiology 2014; 24: 1242-51.
 
144.
Ludwig RJ, Zollner TM, Santoso S, et al. Junctional adhesion molecules (JAM)-B and -C contribute to leukocyte extravasation to the skin and mediate cutaneous inflammation. J Investig Dermatol 2005; 125: 969-76.
 
145.
Vestweber D. Novel insights into leukocyte extravasation. Curr Opin Hematol 2012; 19: 212-7.
 
146.
Banerjee P, Jana S, Chakraborty S, Swarnakar S. Inflammation and MMPs in alcohol-induced liver diseases and protective action of antioxidants. Indian J Biochem Biophys 2013; 50: 377-86.
 
147.
Bruschi F, Bianchi C, Fornaro M, et al. Matrix metalloproteinase (MMP)-2 and MMP-9 as inflammation markers of Trichinella spiralis and Trichinella pseudospiralis infections in mice. Parasite Immunol 2014; 36: 540-9.
 
148.
Väänänen T, Hämäläinen M, Koskinen A, et al. YKL-40 is associated with inflammation and MMPs in osteoarthritis. Osteoarthr Cartilage 2016; 24: S78-9.
 
149.
Bulbule A, Saraswati S, Kundu GC. Status of research on matrix metalloproteinases (MMPs) in India. Exp Opin Ther Targets 2011; 15: 671-5.
 
150.
Nathan C, Ding A. Nonresolving inflammation. Cell 2010; 140: 871-82.
 
151.
Seiler R, Thalmann GN, Fleischmann A. MMP-2 and MMP-9 in lymph-node-positive bladder cancer. J Clin Pathol 2011; 64: 1078-82.
 
152.
Cox G, O’Byrne KJ. Matrix metalloproteinases and cancer. Anticancer Res 2001; 21: 4207-19.
 
153.
Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 2011; 278: 16-27.
 
154.
Hadler-Olsen E, Winberg JO, Uhlin-Hansen L. Matrix metalloproteinases in cancer: their value as diagnostic and prognostic markers and therapeutic targets. Tumor Biol 2013; 34: 2041-51.
 
155.
Apidianakis Y, Ferrandon D. Model Organisms in Inflammation and Cancer. Frontiers Media SA, Lausanne, Switzerland 2014.
 
156.
Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010; 140: 883-99.
 
157.
Werb Z, Coussens LM. Inflammation and cancer. Nature 2002; 420: 860-7.
 
158.
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646-74.
 
159.
Capece D, Fischietti M, Verzella D, et al. The inflammatory microenvironment in hepatocellular carcinoma: a pivotal role for tumor-associated macrophages. Bio­Med Res Int 2013; 2013: 187204-15.
 
160.
Weitzenfeld P, Meron N, Leibovich-Rivkin T, Meshel T, Ben-Baruch A. Progression of luminal breast tumors is promoted by menage a trois between the inflammatory cytokine TNF[alpha] and the hormonal and growth-supporting arms of the tumor microenvironment. Mediators Inflamm 2013; 2013; 720536.
 
161.
Coveñas R, Muñoz M. Cancer progression and substance P. Histol Histopathol 2014; 29: 881-90.
 
162.
Muñoz M, Coveñas R. Involvement of substance P and the NK-1 receptor in cancer progression. Peptides 2013; 48: 1-9.
 
163.
Pena MMO, Zhang Y, Davis C, et al. Abstract C21: IL-33 promotes growth and liver metastasis of colorectal cancer in mice by remodeling the tumor microenvironment and inducing angiogenesis. Cancer Res 2016; 76 (15 Suppl): C21.
 
164.
Liu X, Zhu L, Lu X, et al. IL-33/ST2 pathway contributes to metastasis of human colorectal cancer. Biochem Bio­phys Res Commun 2014; 453: 486-92.
 
165.
Bastiaannet E, Sampieri K, Dekkers OM, et al. Use of aspirin postdiagnosis improves survival for colon cancer patients. Br J Cancer 2012; 106: 1564-70.
 
166.
Lim WY, Chuah KL, Eng P, et al. Aspirin and non-aspirin non-steroidal anti-inflammatory drug use and risk of lung cancer. Lung Cancer 2012; 77: 246-51.
 
167.
Mione M, Zon LI. Cancer and inflammation: an aspirin a day keeps the cancer at bay. Curr Biol 2012; 22: R522-5.
 
168.
Björklund M, Koivunen E. Gelatinase-mediated migration and invasion of cancer cells. BBA Rev Cancer 2005; 1755: 37-69.
 
169.
Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 2010; 141: 52-67.
 
170.
Verma RP, Hansch C. Matrix metalloproteinases (MMPs): chemical-biological functions and (Q)SARs. Bioorgan Med Chem 2007; 15: 2223-68.
 
171.
Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 2007; 8: 221-33.
 
172.
Parks WC, Shapiro SD. Matrix metalloproteinases in lung biology. Respir Res 2001; 2: 10-9.
 
173.
Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002; 2: 161-74.
 
174.
Alexander CM, Hansell EJ, Behrendtsen O, et al. Expression and function of matrix metalloproteinases and their inhibitors at the maternal-embryonic boundary during mouse embryo implantation. Development 1996; 122: 1723-36.
 
175.
Zhang XF, Zhang Y, Zhang XH, et al. Clinical significance of neutrophil gelatinase-associated lipocalin (NGAL) expression in primary rectal cancer. BMC Cancer 2009; 9: 134.
 
176.
Kotra LP, Zhang L, Fridman R, Orlando R, Mobashery S. N-Glycosylation pattern of the zymogenic form of human matrix metalloproteinase-9. Bioorg Chem 2002; 30: 356-70.
 
177.
Devarajan P, Johnston JJ, Ginsberg SS, Wart HEV, Berliner N. Structure and expression of neutrophil gelatinase cDNA. Identity with type IV collagenase from HT1080 cells. J Biol Chem 1992; 267: 25228-32.
 
178.
Schwingshackl A, Duszyk M, Brown N, Moqbel R. Human eosinophils release matrix metalloproteinase-9 on stimulation with TNF-alpha. J Allergy Clin Immunol 1999; 104: 983-90.
 
179.
Frisch SM, Morisaki JH. Positive and negative transcriptional elements of the human type IV collagenase gene. Mol Cell Biol 1990; 10: 6524-32.
 
180.
Fernandez-Patron C, Martinez-Cuesta MA, Salas E, et al. Differential regulation of platelet aggregation by matrix metalloproteinases-9 and -2. Thromb Haemostasis 1999; 82: 1730.
 
181.
Vu TH. Don’t mess with the matrix. Nat Genet 2001; 28: 202-3.
 
182.
Chen EI, Kridel SJ, Howard EW, Li W, Godzik A, Smith JW. A unique substrate recognition profile for matrix metalloproteinase-2. J Biol Chem 2002; 277: 4485-91.
 
183.
Kridel SJ, Chen E, Kotra LP, Howard EW, Mobashery S, Smith JW. Substrate hydrolysis by matrix metalloproteinase-9. J Biol Chem 2001; 276: 20572-8.
 
184.
Backstrom JR, Tökés ZA. The 84-kDa form of human matrix metalloproteinase-9 degrades substance P and gelatin. J Neurochem 1995; 64: 1312-8.
 
185.
Birkedal-Hansen H. Role of matrix metalloproteinases in human periodontal diseases. J Periodontol 1993; 64 (5 Suppl): 474-84.
 
186.
Sato H, Kinoshita T, Takino T, Nakayama K, Seiki M. Activation of a recombinant membrane type 1-matrix metalloproteinase (MT1-MMP) by furin and its interaction with tissue inhibitor of metalloproteinases (TIMP)-2. FEBS Lett 1996; 393: 101-4.
 
187.
Yana I, Weiss SJ. Regulation of membrane type-1 matrix metalloproteinase activation by proprotein convertases. Mol Biol Cell 2000; 11: 2387-401.
 
188.
Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 2006; 69: 562-73.
 
189.
Ravi A, Garg P, Sitaraman SV. Matrix metalloproteinases in inflammatory bowel disease: boon or a bane? Inflamm Bowel Dis 2007; 13: 97-107.
 
190.
O’Connell JP, Willenbrock F, Docherty AJ, Eaton D, Murphy G. Analysis of the role of the COOH-terminal domain in the activation, proteolytic activity, and tissue inhibitor of metalloproteinase interactions of gelatinase B. J Biol Chem 1994; 269: 14967-73.
 
191.
Mohan R, Chintala SK, Jung JC, et al. Matrix metalloproteinase gelatinase B (MMP-9) coordinates and effects epithelial regeneration. J Biol Chem 2002; 277: 2065-72.
 
192.
Mohan MJ, Seaton T, Mitchell J, et al. The tumor necrosis factor-alpha converting enzyme (TACE): a unique metalloproteinase with highly defined substrate selectivity. Biochemistry 2002; 41: 9462-9.
 
193.
Cullen B, Smith R, McCulloch E, Silcock D, Morrison L. Mechanism of action of PROMOGRAN, a protease modulating matrix, for the treatment of diabetic foot ulcers. Wound Repair Regeneration 2002; 10: 16-25.
 
194.
Wiegand C, Schönfelder U, Abel M, Ruth P, Kaatz M, Hipler UC. Protease and pro-inflammatory cytokine concentrations are elevated in chronic compared to acute wounds and can be modulated by collagen type I in vitro. Arch Dermatol Res 2010; 302: 419-28.
 
195.
Van den Steen PE, Dubois B, Nelissen I, Rudd PM, Dwek RA, Opdenakker G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol 2002; 37: 375-536.
 
196.
O’Connor TM, O’Connell J, O’Brien DI, Goode T, Bredin CP, Shanahan F. The role of substance P in inflammatory disease. J Cell Physiol 2004; 201: 167-80.
 
197.
Nissinen L, Kähäri VM. Matrix metalloproteinases in inflammation. Biochim Biophys Acta 2014; 1840: 2571-80.
 
198.
Nagase H, Woessner JJF. Matrix metalloproteinases. J Biol Chem 1999; 274: 21491-4.
 
199.
Borregaard N. Development of neutrophil granule diversity. Ann N Y Acad Sci 1997; 832: 62-8.
 
200.
Cowland JB, Borregaard N. The individual regulation of granule protein mRNA levels during neutrophil maturation explains the heterogeneity of neutrophil granules. J Leukoc Biol 1999; 66: 989-95.
 
201.
Chandrashekar N, Selvamani A, Subramanian R, Pandi A, Thiruvengadam D. Baicalein inhibits pulmonary carcinogenesis-associated inflammation and interferes with COX-2, MMP-2 and MMP-9 expressions in-vivo. Toxicol Appl Pharmacol 2012; 261: 10-21.
 
202.
Opdenakker G, Philippe EV, Dubois B, et al. Gelatinase B functions as regulator and effector in leukocyte biology. J Leukoc Biol 2001; 69: 851-9.
 
203.
Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Develop 2000; 14: 163-76.
 
204.
Schönbeck U, Mach F, Libby P. Generation of biologically active IL-1 beta by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1 beta processing. J Immunol 1998; 161: 3340-6.
 
205.
Khokha R, Murthy A, Weiss A. Metalloproteinases and their natural inhibitors in inflammation and immunity. Nat Rev Immunol 2013; 13: 649-65.
 
206.
Nathan C. Points of control in inflammation. Nature 2002; 420: 846-52.
 
207.
Lee HM, Ciancio SG, Tüter G, Ryan ME, Komaroff E, Golub LM. Subantimicrobial dose doxycycline efficacy as a matrix metalloproteinase inhibitor in chronic periodontitis patients is enhanced when combined with a non-steroidal anti-inflammatory drug. J Periodontol 2004; 75: 453-63.
 
208.
Sierevogel M, Pasterkamp G, Kleijn D, Strauss B. Matrix metalloproteinases: a therapeutic target in cardiovascular disease. Curr Pharm Design 2003; 9: 1033-40.
 
209.
Sorsa T, Ramamurthy NS, Vernillo AT, et al. Functional sites of chemically modified tetracyclines: inhibition of the oxidative activation of human neutrophil and chicken osteoclast pro-matrix metalloproteinases. J Rheumatol 1998; 25: 975-82.
 
210.
Seftor REB, Seftor EA, De Larco JE, et al. Chemically modified tetracyclines inhibit human melanoma cell invasion and metastasis. Clin Exp Metastasis 1998; 16: 217-25.
 
211.
Cianfrocca M, Cooley TP, Lee JY, et al. Matrix metalloproteinase inhibitor COL-3 in the treatment of AIDS-related Kaposi’s sarcoma: a phase I AIDS malignancy consortium study. J Clin Oncol 2002; 20: 153-9.
 
212.
Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420: 860-7.
 
213.
Radisky ES, Radisky DC. Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer. J Mammary Gland Biol Neoplasia 2010; 15: 201-12.
 
214.
Baruch RR, Melinscak H, Lo J, Liu Y, Yeung O, Hurta RAR. Altered matrix metalloproteinase expression associated with oncogene-mediated cellular transformation and metastasis formation. Cell Biol Int 2001; 25: 411-20.
 
215.
Guo CB, Wang S, Deng C, Zhang DL, Wang FL, Jin XQ. Relationship between matrix metalloproteinase 2 and lung cancer progression. Mol Diag Ther 2007; 11: 183-92.
 
216.
Mook ORF, Frederiks WM, Van Noorden CJF. The role of gelatinases in colorectal cancer progression and metastasis. Biochim Biophys Acta 2004; 1705: 69-89.
 
217.
van den Oord JJ, Paemen L, Opdenakker G, de Wolf-Peeters C. Expression of gelatinase B and the extracellular matrix metalloproteinase inducer EMMPRIN in benign and malignant pigment cell lesions of the skin. Am J Pathol 1997; 151: 665-70.
 
218.
Pacheco MM, Mourao M, Mantovani EB, Nishimoto IN, Mitzi Brentani M. Expression of gelatinases A and B, stromelysin-3 and matrilysin genes in breast carcinomas: clinico-pathological correlations. Clin Exp Metastasis 1998; 16: 577-85.
 
219.
Scorilas A, Karameris A, Arnogiannaki N, et al. Overexpression of matrix-metalloproteinase-9 in human breast cancer: a potential favourable indicator in node-negative patients. Br J Cancer 2001; 84: 1488-96.
 
220.
Takeha S, Fujiyama Y, Bamba T, Sorsa T, Nagura H, Ohtani H. Stromal expression of MMP-9 and urokinase receptor is inversely associated with liver metastasis and with infiltrating growth in human colorectal cancer: a novel approach from immune/inflammatory aspect. Jap J Cancer Res 1997; 88: 72-81.
 
221.
Zeng ZS, Huang Y, Cohen AM, Guillem JG. Prediction of colorectal cancer relapse and survival via tissue RNA levels of matrix metalloproteinase-9. J Clin Oncol 1996; 14: 3133-40.
 
222.
Vihinen P, Kähäri VM. Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets. Int J Cancer 2002; 99: 157-66.
 
223.
Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 2006; 25: 9-34.
 
224.
Murphy G. The ADAMs: signalling scissors in the tumour microenvironment. Nat Rev Cancer 2008; 8: 932-41.
 
225.
Koshikawa N, Giannelli G, Cirulli V, Miyazaki K, Quaranta V. Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J Cell Biol 2000; 148: 615-24.
 
226.
Torre C, Wang SJ, Xia W, Bourguignon LYW. Reduction of hyaluronan-CD44–mediated growth, migration, and cisplatin resistance in head and neck cancer due to inhibition of Rho kinase and PI-3 kinase signaling. Arch Otolaryngol Head Neck Surg 2010; 136: 493-501.
 
227.
Baciu PC, Suleiman EA, Deryugina EI, Strongin AY. Membrane type-1 matrix metalloproteinase (MT1-MMP) processing of pro-alphav integrin regulates cross-talk between alphavbeta3 and alpha2beta1 integrins in breast carcinoma cells. Exp Cell Res 2003; 291: 167-75.
 
228.
Fukushima Y, Ohnishi T, Arita N, Hayakawa T, Sekiguchi K. Integrin alpha3beta1-mediated interaction with laminin-5 stimulates adhesion, migration and invasion of malignant glioma cells. Int J Cancer 1998; 76: 63-72.
 
229.
Werb Z. ECM and Cell Surface Proteolysis: Regulating Cellular Ecology. Elsevier Inc 1997; 439-42.
 
230.
Morozevich G, Kozlova N, Cheglakov I, Ushakova N, Berman A. Integrin 51 controls invasion of human breast carcinoma cells by direct and indirect modulation of MMP-2 collagenase activity. Cell Cycle 2009; 8: 2219-25.
 
231.
Muñoz M, Coveñas R. Safety of neurokinin-1 receptor antagonists. Expert Opin Drug Saf 2013; 12: 673-85.
 
232.
Pernow B. Distribution of substance P in the central and peripheral nervous system. Nature 1953; 171: 746-7.
 
233.
Sioka C, Kyritsis AP. Central and peripheral nervous system toxicity of common chemotherapeutic agents. Cancer Chemother Pharmacol 2009; 63: 761-7.
 
234.
Blum AM, Elliott DE, Metwali A, Li J, Qadir K, Weinstock JV. Substance P regulates somatostatin expression in inflammation. J Immunol 1998; 161: 6316-22.
 
235.
Ringel Y, Carroll IM, Palsson OS, Sartor RB. S1249 substance P and its mucosal receptors – possible mediators of inflammation and noxious sensation in irritable bowel syndrome. Gastroenterology 2009; 136: A-221-2.
 
236.
Garcia-Recio S, Gascón P. Biological and pharmacological aspects of the NK1-receptor. BioMed Res Int 2015; 2015: 495704.
 
237.
Bhatia M. Hydrogen sulfide and substance P in inflammation. Antioxid Redox Signal 2010; 12: 1191-202.
 
238.
Killough SA, Lundy FT, Irwin CR. Substance P expression by human dental pulp fibroblasts: a potential role in neurogenic inflammation. J Endod 2009; 35: 73-7.
 
239.
Luber-Narod J, Austin-Ritchie T, Hollins IC, et al. Role of substance P in several models of bladder inflammation. Urol Res 1997; 25: 395-9.
 
240.
Payan DG. Neuropeptides and inflammation: the role of substance P. Ann Rev Med 1989; 40: 341-52.
 
241.
Rodriguez-Grande B, Blackabey V, Gittens B, Pinteaux E, Denes A. Loss of substance P and inflammation precede delayed neurodegeneration in the substantia nigra after cerebral ischemia. Brain Behav Immun 2013; 29: 51-61.
 
242.
Kabashima H, Nagata K, Maeda K, Iijima T. Involvement of substance P, mast cells, TNF-alpha and ICAM-1 in the infiltration of inflammatory cells in human periapical granulomas. J Oral Pathol Med 2002; 31: 175-80.
 
243.
Khan MM, Douglas SD, Benton TD. Substance P-neurokinin-1 receptor interaction upregulates monocyte tissue factor. J Neuroimmunol 2012; 242: 1-8.
 
244.
Mascetta G, di Mola FF, Tavano F, et al. Substance P and neprilysin in chronic pancreatitis. Eur Surg Res 2012; 48: 131-8.
 
245.
Lieb K, Schaller H, Bauer J, Berger M, Schulze-Osthoff K, Fiebich BL. Substance P and histamine induce interleukin-6 expression in human astrocytoma cells by a mechanism involving protein kinase C and nuclear factor-IL-6. J Neurochem 1998; 70: 1577-83.
 
246.
Saban MR, Saban R, Bjorling D, Haak-Frendscho M. Involvement of leukotrienes, TNF-alpha, and the LFA-1/ICAM-1 interaction in substance P-induced granulocyte infiltration. J Leukoc Biol 1997; 61: 445-51.
 
247.
Ansel JC, Brown JR, Payan DG, Brown MA. Substance P selectively activates TNF-alpha gene expression in murine mast cells. J Immunol 1993; 150: 4478-85.
 
248.
Li J, Mahiouz DL, Farthing PM, Haskard DO, Thornhill MH. Heterogeneity of ICAM-1 expression, and cytokine regulation of ICAM-1 expression, in skin and oral keratinocytes. J Oral Pathol Med 1996; 25: 112-8.
 
249.
Matis WL, Lavker RM, Murphy GF. Substance P induces the expression of an endothelial-leukocyte adhesion molecule by microvascular endothelium. J Investig Dermatol 1990; 94: 492-5.
 
250.
Halliday DA, McNeil JD, Betts WH, Scicchitano R. A role for the C-terminal fragment of substance P, SP 7-11 in the pathogenesis of arthritis. Regulatory Peptides 1993; 46: 195-7.
 
251.
Chen XY, Ru GQ, Ma YY, et al. High expression of substance P and its receptor neurokinin-1 receptor in colorectal cancer is associated with tumor progression and prognosis. Onco Targets Ther 2016; 9: 3595-602.
 
252.
Ma J, Yuan S, Cheng J, Kang S, Zhao W, Zhang J. Substance P promotes the progression of endometrial adenocarcinoma. Int J Gynecol Cancer 2016; 26: 845-50.
 
253.
Muñoz M, González-Ortega A, Coveñas R. The NK-1 receptor is expressed in human leukemia and is involved in the antitumor action of aprepitant and other NK-1 receptor antagonists on acute lymphoblastic leukemia cell lines. Investig New Drugs 2012; 30: 529-40.
 
254.
Muñoz M, González-Ortega A, Rosso M, et al. The substance P/neurokinin-1 receptor system in lung cancer: focus on the antitumor action of neurokinin-1 receptor antagonists. Peptides 2012; 38: 318-25.
 
255.
Li X, Ma G, Ma Q, et al. Neurotransmitter substance P mediates pancreatic cancer perineural invasion via NK-1R in cancer cells. Mol Cancer Res 2013; 11: 294-302.
 
256.
Nowicki M, Ostalska-Nowicka D, Kondraciuk B, Miskowiak B. The significance of substance P in physiological and malignant haematopoiesis. J Clin Pathol 2007; 60: 749-55.
 
257.
Muñoz M, Rosso M, Coveñas R. A new frontier in the treatment of cancer: NK-1 receptor antagonists. Curr Med Chem 2010; 17: 504-16.
 
258.
Friess H, Zhu Z, Liard V, et al. Neurokinin-1 receptor expression and its potential effects on tumor growth in human pancreatic cancer. Labor Investig 2003; 83: 731-42.
 
259.
Lewis KM, Harford-Wright E, Vink R, Nimmo AJ, Ghabriel MN. Walker 256 tumour cells increase substance P immunoreactivity locally and modify the properties of the blood–brain barrier during extravasation and brain invasion. Clin Exp Metastasis 2013; 30: 1-12.
 
260.
Vilisaar J, Kawabe K, Braitch M, et al. Reciprocal regulation of substance P and IL-12/IL-23 and the associated cytokines, IFN/IL-17: a perspective on the relevance of this interaction to multiple sclerosis. J Neuroimm Pharmacol 2015; 10: 457-67.
 
261.
Dickerson C, Undem B, Bullock B, Winchurch RA. Neuropeptide regulation of proinflammatory cytokine responses. J Leukoc Biol 1998; 63: 602-5.
 
262.
Nakamura M, Chikama T, Nishida T. Up-regulation of integrin alpha 5 expression by combination of substance P and insulin-like growth factor-1 in rabbit corneal epithelial cells. Biochem Biophys Res Commun 1998; 246: 777-82.
 
ISSN:2451-0637
Journals System - logo
Scroll to top