BASIC RESEARCH
Hematoporphyrin binding sites on human serum albumin
 
More details
Hide details
1
Department of General Surgery, Regional Specialist Hospital, Czestochowa, Poland
 
2
2nd Department of General Surgery, Jagiellonian University Medical College, Krakow, Poland
 
 
Submission date: 2019-12-03
 
 
Final revision date: 2019-12-27
 
 
Acceptance date: 2020-01-02
 
 
Publication date: 2020-01-31
 
 
Arch Med Sci Civil Dis 2020;5(1):1-7
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
Photodynamic therapy is a minimally invasive clinical treatment modality for a variety of premalignant and malignant conditions combining a photosensitizing drug, oxygen and light irradiation. Hematoporphyrin is an organic photosensitizer, which mediates inhibition of endothelial cell proliferation and induces apoptosis. Human serum albumin is an endogenous drug carrier for hematoporphyrin. The present study aimed to investigate the hematoporphyrin binding to human serum albumin, which is its transport protein.

Material and methods:
The chemical reagents were hematoporphyrin (Hp), human serum albumin (HSA) and bovine serum albumin (BSA). In the experiment two techniques were used: spectrofluorimetry and UV-Vis absorption spectrophotometry.

Results:
The binding sites for Hp were identified in the tertiary structure of HSA by fluorescence quenching technique. The experiment with BSA delivered additional data on Hp-albumin interactions close to Trp135. The participation of tyrosyl residues apart from tryptophanyl ones was discussed. A decrease of the polarity in the binding sites, testifying to possible hydrogen bonding in the binding sites, was also described. The binding and quenching constants Hp-HSA and Hp-BSA were determined as well as the number of binding sites.

Conclusions:
Hp locates in subdomain IIA in the tertiary structure of HSA. The location in subdomain I close to Trp135 is also possible. Hp is also able to interact within tyrosyl residues.

REFERENCES (40)
1.
Ong YH, Kim MM, Finlay JC, et al. PDT dose dosimetry for Photofrin-mediated pleural photodynamic therapy (pPDT). Phys Med Biol 2017; 63: 015031.
 
2.
Hosokawa S, Takebayashi S, Takahashi G, Okamura J, Mineta H. Photodynamic therapy in patients with head and neck squamous cell carcinoma. Lasers Surg Med 2018; 50: 420-6.
 
3.
Ye X, Yin H, Lu Y, Zhang H, Wang H. Evaluation of hydrogel suppositories for delivery of 5-aminolevulinic acid and hematoporphyrin monomethyl ether to rectal tumors. Molecules 2016; 21: pii:1347.
 
4.
Lin C, Zhang Y, Zhu X, et al. The study of killing effect and inducing apoptosis of 630-nm laser on lung adenocarcinoma A549 cells mediated by hematoporphyrin derivatives in vitro. Lasers Med Sci 2019 May 2.
 
5.
Gross SA, Wolfsen HC. The use of photodynamic therapy for diseases of the esophagus. J Environ Pathol Toxicol Oncol 2008; 27: 5-21.
 
6.
Liu H, Liu Y, Wang L, et al. Evaluation on short-term therapeutic effect of 2 porphyrin photosensitizer-mediated photodynamic therapy for esophageal cancer. Technol Cancer Res Treat 2019; 18: 1533033819831989.
 
7.
Railkar R, Agarwal PK. Photodynamic therapy in the treatment of bladder cancer: past challenges and current innovations. Eur Urol Focus 2018; 4: 509-11.
 
8.
DeWitt JM, Sandrasegaran K, O’Neil B, et al. Phase 1 study of EUS-guided photodynamic therapy for locally advanced pancreatic cancer. Gastrointest Endosc 2019; 89: 390-8.
 
9.
Yang J, Shen H, Jin H, Lou Q, Zhang X. Treatment of unresectable extrahepatic cholangiocarcinoma using hematoporphyrin photodynamic therapy: a prospective study. Photodiagnosis Photodyn Ther 2016; 16: 110-8.
 
10.
Ma W, Wang T, Zang L, et al. Bactericidal effects of hematoporphyrin monomethyl ether-mediated blue-light photodynamic therapy against Staphylococcus aureus. Photochem Photobiol Sci 2019; 18: 92-7.
 
11.
Sułkowski L, Pawełczak B, Chudzik M, Maciążek-Jurczyk M. Characteristics of the protoporphyrin IX binding sites on human serum albumin using molecular docking. Molecules 2016; 21: pii:E1519.
 
12.
Ma G, Han Y, Ying H, et al. Comparison of two generation photosensitizers of psd-007 and hematoporphyrin monomethyl ether photodynamic therapy for treatment of port-wine stain: a retrospective study. Photobiomodul Photomed Laser Surg 2019; 37: 376-80.
 
13.
Mei Y, Xiao X, Fan L, et al. In vitro photodynamic therapy of endothelial cells using hematoporphyrin monomethyl ether (Hemoporfin): relevance to treatment of port wine stains. Photodiagnosis Photodyn Ther 2019; 27: 268-75.
 
14.
Ma J, Lai G, Lu Z. Effect of 410 nm photodynamic therapy with hemoporfin on the expression of vascular endothelial growth factor (VEGF) in cultured human vascular endothelial cells. Lasers Med Sci 2019; 34: 149-55.
 
15.
Kim D, Lee MH, Koo MA, et al. Suppression of T24 human bladder cancer cells by ROS from locally delivered hematoporphyrin-containing polyurethane films. Photochem Photobiol Sci 2018; 17: 763-72.
 
16.
He XM, Carter DC. Atomic structure and chemistry of human serum albumin. Nature 1992; 358: 209-14.
 
17.
Geisow MJ. Human serum albumin structure. Trends Biotechnol 1992; 10: 335-7.
 
18.
Carter DC, Ho JX. Structure of serum albumin. Adv Protein Chem 1994; 45: 153-203.
 
19.
de Wolf FA, Brett GM. Ligand-binding proteins. Their potential for application in systems for controlled delivery and uptake of ligands. Pharmacol Rev 2000; 52: 207-36.
 
20.
Równicka-Zubik J, Sułkowski L, Maciążek-Jurczyk M, Sułkowska A. The effect of structural alterations of three mammalian serum albumins on their binding properties. J Mol Structure 2013; 1044: 152-9.
 
21.
Równicka-Zubik J, Sułkowska A, Maciążek-Jurczyk M, Sułkowski L, Sułkowski WW. Effect of denaturating agents on the structural alterations and drug binding capacity of human and bovine serum albumin. Int J Rapid Commun 2012; 45:520-9.
 
22.
Marciniec K, Pawełczak B, Latocha M, et al. Quinolinesulfonamides: interaction between bovine serum albumin, molecular docking analysis and antiproliferative activity against human breast carcinoma cells. Spectroscopy Letters 2017; 50(10).
 
23.
Równicka-Zubik J, Sułkowski L, Toborek M. Interactions of PCBs with human serum albumin: in vitro spectroscopic study. Spectrochim Acta A Mol Biomol Spectroscopy 2014; 124: 632-7.
 
24.
Sułkowski L, Sułkowska A, Rownicka J, et al. The effect of serum albumin on binding of protoporphyrin IX to phospholipid membrane. Mol Cryst Liq Cryst 2006; 448: 73[675]-81[683].
 
25.
Sułkowska A, Drzazga Z, Maciążek M, Równicka J, Bojko B, Sułkowski L. Porphyrin IX – serum albumin interactions. Phys Med 2004; 20 Suppl. 1: 49-51.
 
26.
Sułkowski L, Równicka-Zubik J, Pawełczak B, Pożycka J, Sułkowska A. Effect of encapsulation on phase transition temperature of liposomes. Binding sites in HSA. Mol Cryst Liq Cryst 2014; 603: 105-21.
 
27.
Steinem RF, Weinryb I, Kirby EP (eds). Fluorescence Instrumentation and Methodology, Inc. Maryland, 1970; 39-42.
 
28.
Hiratsuka T. Conformational changes in the 23-kilodalton NH2-terminal peptide segment of myosin ATP-ase associated with ATP hydrolysis. J Biol Chem 1990; 265: 18786-90.
 
29.
Eftink MR, Ghiron CA. Exposure of tryptophanyl residues in proteins. Quantitative determination by fluorescence quenching studies. Biochemistry 1976; 15: 672-80.
 
30.
Lehrer SS. Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 1971; 10: 3254-63.
 
31.
Sudlow G, Birkett DG, Wade DN. The characterization of two specific drug binding sites on human serum albumin. Mol Pharmacol 1975; 11: 824-32.
 
32.
Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K. Crystal structure of human serum albumin at 2.5 Ǻ resolution. Protein Eng 1999; 12: 439-46.
 
33.
Kragh-Hansen U. Evidence for a large and flexible region of human serum albumin possessing high affinity binding sites for salicylate, warfarin, and other ligands. Mol Pharmacol 1988; 34: 160-71.
 
34.
Kragh-Hansen U, Chuang VT, Otagiri M. Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biol Pharm Bull 2002; 25: 695-704.
 
35.
Valeur B. Molecular fluorescence. Principles and applications. Weinheim, Wiley-VCH 2002.
 
36.
Eftink MR, Ghiron CA. Fluorescence quenching studies with proteins. Anal Biochem 1981; 114: 199-227.
 
37.
Carter DC, He XM. Structure of serum albumin. Science 1990; 249: 302-3.
 
38.
Sil S, Kar M, Chakraborti AS. Studies on the interaction of hematoporphyrin with hemoglobin. J Photochem Photobiol B 1997; 41: 67-72.
 
39.
Guharay J, Sengupta PK. Characterization of the fluorescence emission properties of 7-azatryptophan in reverse micellar environments. Biochem Biophys Res Commun 1996; 219: 388-92.
 
40.
Chadborn N, Bryant J, Bain AJ, O’Shea P. Ligand-dependent conformational equilibria of serum albumin revealed by tryptophan fluorescence quenching. Biophys J 1999; 76: 2198-207.
 
ISSN:2451-0637
Journals System - logo
Scroll to top