BASIC RESEARCH
Stability of spectrofluorimetric spectra of hematoporphyrin–serum albumin complexes: in vitro study
 
More details
Hide details
1
Department of General Surgery, Regional Specialist Hospital, Częstochowa, Poland
 
2
2nd Department of General Surgery, Jagiellonian University Medical College, Krakow, Poland
 
 
Submission date: 2021-02-22
 
 
Final revision date: 2021-03-21
 
 
Acceptance date: 2021-03-21
 
 
Publication date: 2021-04-16
 
 
Arch Med Sci Civil Dis 2021;6(1):18-21
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
Hematoporphyrin is a photosensitizer used in photodynamic therapy of various malignant diseases. It is carried to the cancer tissue by serum albumins. Spectrofluorimetric spectra of hematoporphyrin–serum albumin complexes were examined in vitro.

Material and methods:
The chemicals were: hematoporphyrin, human serum albumin and bovine serum albumin. The spectra were recorded on a Kontron SFM-25 Instrument AG at two excitation wavelengths: ex = 280 nm and ex = 295 nm. The spectra of hematoporphyrin 1.5 × 10–5 M as well as spectra of complexes of hematoporphyrin–human serum albumin (1.5 × 10–5 M Hp – 1.25 × 10–6 M HSA) and hematoporphyrin–bovine serum albumin (1.5 × 10–5 M Hp – 3.5 × 10–7 M BSA) were recorded repetitively for 8 days and compared to the initial spectrum.

Results:
Formation of a complex with human serum albumin extends the stability of the hematoporphyrin spectrum. This extension is greater at excitation ex = 295 nm. Different stability of complexes with bovine and human serum albumins most likely does not result from an actual lower stability of bovine serum albumin complexes, but from the fact that dissimilarity in the structure of both albumins enables additional spectroscopic observations within subdomain IB in the bovine serum albumin molecule.

Conclusions:
Spectrofluorimetric spectra are stable longer when hematoporphyrin forms a complex with human serum albumin. The present data may be important for understanding the mechanism of hematoporphyrin transportation to the target cancer tissue and effectiveness of photodynamic therapy.

REFERENCES (21)
1.
Osaki T, Gonda K, Murahata Y, et al. Photodynamic detection of a feline meningioma using 5-aminolaevulinic acid hydrochloride. JFMS Open Rep 2020; 6: 2055116920907429.
 
2.
Sułkowski L, Osuch C, Matyja M, Matyja A. Hematoporphyrin binding sites on human serum albumin. Arch Med Sci Civil Dis 2020; 5: e1-7.
 
3.
Ma G, Han Y, Ying H, et al. Comparison of two generation photosensitizers of psd-007 and hematoporphyrin monomethyl ether photodynamic therapy for treatment of port-wine stain: a retrospective study. Photobiomod Photomed Laser Surg 2019; 37: 376-80.
 
4.
Chekulayeva LV, Chekulayev VA, Shevchuk IN. Active oxygen intermediates in the degradation of hematoporphyrin derivative in tumor cells subjected to photodynamic therapy. J Photochem Photobiol B 2008; 93: 94-107.
 
5.
Bui B, Liu L, Chen W. Latex carrier for improving protoporphyrin IX for photodynamic therapy. Photodiagnosis Photodyn Ther 2016; 14: 159-65.
 
6.
Kessel D, Photodynamic therapy: a brief history. J Clin Med 2019; 8: 1581.
 
7.
Sułkowski L, Sułkowska A, Rownicka J, et al. The effect of serum albumin on binding of protoporphyrin IX to phospholipid membrane. Mol Cryst Liq Cryst 448, 2006; 448: 73[675]-81[683].
 
8.
Sułkowski L, Pawełczak B, Chudzik M, Maciążek-Jurczyk M. Characteristics of the protoporphyrin IX binding sites on human serum albumin using molecular docking. Molecules 2016; 21: 1519.
 
9.
Równicka-Zubik J, Sułkowski L, Maciążek-Jurczyk M, Sułkowska A. The effect of structural alterations of three mammalian serum albumins on their binding properties. J Mol Structure 2013; 1044: 152-9.
 
10.
Sułkowski L, Równicka-Zubik J, Pawełczak B, Pożycka J, Sułkowska A. Effect of encapsulation on phase transition temperature of liposomes. Binding sites in HSA. Mol Cryst Liq Cryst 2014; 603: 105-21.
 
11.
Sułkowska A, Drzazga Z, Maciążek M, Równicka J, Bojko B, Sułkowski L. Porphyrin IX – serum albumin interactions. Phys Med 2004; 20 Suppl. 1: 49-51.
 
12.
Równicka-Zubik J, Sułkowska A, Maciążek-Jurczyk M, Sułkowski L, Sułkowski WW. Effect of denaturating agents on the structural alterations and drug binding capacity of human and bovine serum albumin. Spectroscopy Letters 2012; 45: 520-9.
 
13.
Carter DC, He XM. Structure of serum albumin. Science 1990; 249: 302-3.
 
14.
Równicka-Zubik J, Sułkowski L, Toborek M. Interactions of PCBs with human serum albumin: in vitro spectroscopic study. Spectrochim Acta A Mol Biomol Spectrosc 2014; 124: 632-7.
 
15.
Sudlow G, Birkett DJ, Wade DN. The characterization of two specific drug binding sites on human serum albumin. Mol Pharmacol 1975; 11: 824-32.
 
16.
Sudlow G, Birkett DJ, Wade DN. Further characterization of specific drug binding sites on human serum albumin. Mol Pharmacol 1976; 12: 1052-61.
 
17.
Marciniec K, Pawełczak B, Latocha M, et al. Quinolinesulfonamides: interaction between bovine serum albumin, molecular docking analysis and antiproliferative activity against human breast carcinoma cells. Spectroscopy Letters 2017; 50: 532-8.
 
18.
Kragh-Hansen U, Chuang VT, Otagiri M. Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biol Pharm Bull 2002; 25: 695-704.
 
19.
Steinem RF, Weinryb I, Kirby EP (eds.). Fluorescence Instrumentation and Methodology, Inc., Maryland 1970; 39-42.
 
20.
Ihara D, Hazama H, Nishimura T, Morita Y, Awazu K. Fluorescence detection of deep intramucosal cancer excited by green light for photodynamic diagnosis using protoporphyrin IX induced by 5-aminolevulinic acid: an ex vivo study. J Biomed Opt 2020; 25: 1-13.
 
21.
Valeur B. Molecular fluorescence. Principles and Applications. Wiley-VCH, Weinheim 2002.
 
ISSN:2451-0637
Journals System - logo
Scroll to top