CLINICAL RESEARCH
Detection of IMP and VIM genes in Pseudomonas aeruginosa isolated from Egyptian patients
More details
Hide details
Submission date: 2018-12-23
Final revision date: 2019-04-21
Acceptance date: 2019-04-21
Publication date: 2019-07-18
Arch Med Sci Civil Dis 2019;4(1):58-63
KEYWORDS
TOPICS
ABSTRACT
Introduction:
Metallo-β-lactamase production among Pseudomonas aeruginosa is a major health problem worldwide. Pseudomonas aeruginosa acquire several mechanisms of resistance towards carbapenems through the production of metallo-β-lactamases, especially VIM and IMP. The problem of multi-drug-resistant Pseudomonas aeruginosa is increasing all over the world, reaching dangerous levels. The aim of this study was to detect the metallo-β-lactamases blaVIM and blaIMP genes in Pseudomonas aeruginosa strains in Suez Canal University Hospital in Ismailia, Egypt.
Material and methods:
A cross-sectional descriptive study was conducted on 65 Pseudomonas aeruginosa strains. Genotypic detection of blaVIM and blaIMP was reached by using polymerase chain reaction.
Results:
Out of 65 Pseudomonas aeruginosa strains , blaVIM gene was present in four females and one male, with an age of 42.9 ±18.1; two cases were isolated from the Oncology Department, and one case each was present in the Burn Unit, Surgery Ward, and Intensive Care Unit. The blaVIM gene was expressed in four stains, while the blaIMP gene was not expressed in any strain.
Conclusions:
The carbapenem resistance in our patients can be referred to as metallo-β-lactamases blaVIM type. The problem of metallo-β-lactamases and carbapenem resistance requires ongoing surveillance, strong preventive measures, and implementation of infection control policies and procedures. Also, routine diagnostic laboratory methods should be performed, and synthesis of antimicrobial products with new effecting mechanism should be implemented in hospitals.
REFERENCES (31)
1.
Lucia A, de Freitas P, Barth AL. Antibiotic resistance and molecular typing of Pseudomonas aeruginosa: focus on imipenem. Brazil J Infect Dis 2002; 6: 1-7.
2.
Cabot G, Ocampo-Sosa AA, Dominguez MA, et al. Spanish Network for Research in Infectious Diseases (REIPI): genetic markers of widespread extensively drug-resistant Pseudomonas aeruginosa high-risk clones. Antimicrob Agents Chemother 2012; 56: 6349-57.
3.
Poole K. Pseudomonas aeruginosa: resistance to the max. Front Microbiol 2011; 2: 65.
4.
Lee JY, Ko KS. OprD mutations and inactivation, expression of efflux pumps and AmpC, and metallo-.
5.
beta-lactamases in carbapenem-resistant Pseudomonas aeruginosa isolates from South Korea. Int J Antimicrob Agents 2012; 40: 168-72.
6.
Wang J, Zhou JY, Qu TT, et al. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Chinese hospitals. Int J Antimicrob Agents 2010; 35: 486-91.
7.
Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 2009; 22: 582-610.
8.
Garau G, GarcSez I, Bebrone C, et al. Update of the standard numbering scheme for class B-lactamases. Antimicrob Agents Chemother 2004; 48: 2347-9.
9.
Golshani B, Lamotte-Brasseur J, Rossolini GM, et al. Standard numbering schemefor class (B)-lactamases. Antimicrob Agents Chemother 2005; 45: 660-3.
10.
Zhou F, Ji B, Zhang H, et al. Synergistic effect of thymol and carvacrol combined with chelators and organic acids against Salmonella typhimurium. J Food Prot 2007; 70: 1704-9.
11.
Libisch B, Balogh B, Fuzi M. Identification of two multidrug-resistant Pseudomonas aeruginosa clonal lineages with a countrywide distribution in Hungary. Curr Microbiol 2009; 58: 111-6.
12.
Fiett J, Baraniak A, Mrowka A, et al. Molecular epidemiology of acquired-metallo-beta-lactamase-producing bacteria in Poland. Antimicrob Agents Chemother 2006; 50: 880-6.
13.
Kouda S, Ohara M, Onodera M, et al. Increased prevalence and clonal dissemination of multidrug-resistant Pseudomonas aeruginosa with the blaIMP-1 gene cassette in Hiroshima. J Antimicrob Chemother 2009; 64: 46-51.
14.
Upadhyay S, Sen MR, Bhattacharjee A. Presence of different beta-lactamase classes among clinical isolates of Pseudomonas aeruginosa expressing AmpC beta-lactamase enzyme. J Infect Dev Ctries 2010; 4: 239-42.
15.
El-Maraghy NN, El-Hadidi GS, Mansour MK, El-Saeiyed MM. Detection of metallo-beta-lactamase enzyme among isolated Pseudomonas aeruginosa from nosocomial infected patients at Suez Canal University Hospital. Int J Curr Microbiol App Sci 2015; 4: 191-202.
16.
Lee K, Lee WG, Uh Y, et al. Nationwide surveillance of antimicrobial resistance Group. VIM- and IMP-type metallo-lactamase-producing Pseudomonas spp. and Acinetobacter spp. in Korean hospitals. Emerg Infect Dis 2003; 9: 868-71.
17.
Yang Y, Livermore DM. Biochemical characterization of a beta-lactamase that hydrolyzes penems and carbapenems from two Serratia marcescens isolates. Antimicrob. Agents Chemother 1990; 34: 755-75.
18.
Mendes RE, Kiyota KA, Monteiro J, et al. Rapid detection and identification of metallo-beta-lactamase –encoding genes by multiplex real-time PCR essay and melt curve analysis. J Clin Microbiol 2007; 45: 544-7.
19.
Song JH, Chung DR. Respiratory infections due to drug-resistant bacteria. Infect Dis Clin North Am 2010; 24: 639-53.
20.
Patzer JA, Dzierzanowska D. Increase of imipenem resistance among Pseudomonas aeruginosa isolates from a Polish paediatric hospital (1993-2002). Int J Antimicrob Agents 2007; 29: 153-8.
21.
Sunagawa M, Kanazawa K, Nouda H. Antipseudomonal activity of carbapenem antibiotics. Jpn J Antibiot 2000; 53: 479-511.
22.
Senda K, Arakawa Y, Ichiyama S, et al. PCR detection of metallo-beta-lactamase gene (blaIMP) in gram-negative rods resistant to broad-spectrum beta-lactams. J Clin Microbiol 1996; 34: 2909-13.
23.
Niitsuma K, Saitoh M, Kojimabara M, et al. Antimicrobial susceptibility of Pseudomonas aeruginosa isolated in Fukushima Prefecture. Jpn J Antibiot 2001; 54: 79-87.
24.
Arakawa Y, Shibata N, Shibayama K, et al. Convenient test for screening metallo-beta-lactamase-producing Gram-negative bacteria by using thiol compounds. J Clin Microbiol 2000; 38: 40-3.
25.
Toleman MA, Rolston K, Jones RN, Walsh TR. blaVIM-7, an evolutionarily distinct metallo-beta-lactamase gene in a Pseudomonas aeruginosa isolate from the United States. Antimicrob Agents Chemother 2004; 48: 329-332.
26.
Diab M, Fam N, El-Said M, El-Dabaa E, El-Defrawy I, Saber M. Occurrence of VIM-2 Metallo-beta- lactamases in imipenem resistant and susceptible Pseudomonas aeruginosa clinical isolates from Egypt. Afr J Microbiol Res 2013; 7: 4465-72.
27.
Mansour SA, Eldaly O, Fatani AJ, Mohamed ML, Ibrahim EM. Epidemiological characterization of P. aeruginosa isolates of intensive care units in Egypt and Saudi Arabia. East Mediterr Health J 2013; 19: 71-80.
28.
Walsh TR, Li H, Toleman MA, Bennett PM, Jones RN. Complete sequence of p 07–406, a 24,179-base-pair plasmid harboring the blaVIM-7 metallo-beta-lactamase gene in a Pseudomonas aeruginosa isolate from the United States. Antimicrob Agents Chemother 2008; 52: 3099-105.
29.
Elias J, Schoen C, Heinze G, et al. Nosocomial outbreak of VIM-2 metallo-beta-lactamase-producing Pseudomonas aeruginosa associated with retrograde urography. Clin Microbiol Infect 2010; 16: 1494-500.
30.
Salami H, Owlia P, Yakhchali B, Rastegarlari A. Drug susceptibility and molecular epidemiology of Pseudomonas aeruginosa isolated in a burn unit. J Infect Dis 2009; 5: 308-13.
31.
Fazeli H, Sadighian H, Nasr Esfahani B, Pourmand MR. Idenfication of class-1 integron and various beta-lactamase classes among clinical isolates of Pseudomonas aeruginosa at Children’s Medical Center Hospital. J Med Bacteriol 2012; 1: 25-36.