CLINICAL RESEARCH
Blood-brain barrier damage as a predictor of outcome in patients with purulent meningitis
 
More details
Hide details
 
Submission date: 2018-02-11
 
 
Final revision date: 2018-03-12
 
 
Acceptance date: 2018-04-06
 
 
Publication date: 2018-04-30
 
 
Arch Med Sci Civil Dis 2018;3(1):26-33
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
Purulent meningitis is a severe infection of the central nervous system caused by different bacteria and very often causes severe complications and high lethality. Since the disease still has unclear pathogenesis and high mortality, researchers and clinicians are focused on the influence of damage of the blood-brain barrier (BBB) and its subsequent impact on the outcome of purulent meningitis. The aim of this study was to investigate the albumin concentration and the albumin coefficient as the best parameters of BBB damage, and their influence on the outcome of patients with purulent meningitis.

Material and methods:
The study was carried out by examining the hospitalized patients in the Clinic of Infective Diseases in Prishtina, Kosovo. Blood-brain barrier damage is evaluated by analyzing the dynamics of values of proteins, glucose and albumins, as well as by determining the BBB coefficient of damage.

Results:
The data consistent with BBB damage in patients with purulent meningitis corresponded with disease outcome. Consequently, 56.97% of the patients who developed complications or died had very severe BBB damage. Patients with the mean value of albumin coefficient X = 46.5 ±27.23 g/l were at higher risk of developing complications (relative risk (RR) = 2.63; p < 0.0001) or having a lethal outcome (RR = 5.20; p < 0.0001). Patients with longer duration of pathological mean values of albumin coefficient were at higher risk of developing complications (RR = 3.11; p < 0.0001).

Conclusions:
Our data suggest that BBB damage in patients with purulent meningitis correspond with disease outcome. The best predictors for outcome were albumin coefficient and albumin concentration in cerebrospinal fluid.

 
REFERENCES (41)
1.
Baunbæk-Knudsen G, Sølling M, Farre A, Benfield T, Brandt CT. Improved outcome of bacterial meningitis associated with use of corticosteroid treatment. Infect Dis 2016; 48: 281-6.
 
2.
van de Beek D. Corticosteroids for acute adult bacterial meningitis. Med Mal Infect 2009; 39: 531-8.
 
3.
Tauber MG, Khayam-Bashi H, Sande MA. Effects of ampicillin and corticosteroids on brain water content, cerebrospinal fluid pressure, and cerebrospinal fluid lactate levels in experimental pneumococcal meningitis.
 
4.
J Infect Dis 1985; 151: 528-34.
 
5.
Padridge WM. Drug delivery to the brain. J Cereb Blood Flow Metab 1997; 17: 713-31.
 
6.
Kieseier BC, Paul R, Koedel U, et al. Differential expression of matrix metalloproteinases in bacterial meningitis. Brain 1999; 122: 1579-87.
 
7.
Koedel U, Bernatowicz A, Paul R, Frei K, Fontana A, Pfister HW. Experimental pneumococcal meningitis: cerebrovascular alterations, brain edema, and meningeal inflammation are linked to the production of nitric oxide. Ann Neurol 1995; 37: 313-23.
 
8.
Lutsar I, Friedland IR, Jafri HS, et al. Factors influencing the anti-inflammatory effect of dexamethasone therapy in experimental pneumococcal meningitis. J Antimicrob Chemother 2003; 52: 651-5.
 
9.
Hoyer C, Eisele P, Ebert AD, et al. Blood-CSF-barrier dysfunction is a marker for encephalitic involvement in patients with aseptic meningitis/meningoencephalitis. J Clin Virol 2016; 84: 82-6.
 
10.
Alonso A, Eisele P, Ebert AD, et al. Leptomeningeal contrast enhancement and blood-CSF barrier dysfunction in aseptic meningitis. Neurol Neuroimmunol 2015; 2: e164.
 
11.
Dzupova O, Rozsypal H, Prochazka B, Benes J. Acute bacterial meningitis in adults: predictors of outcome. Scand J Infect Dis 2009; 41: 348-54.
 
12.
Arguedas AG. Marks IM. Recent advances in the treatment of meningitis, including steroids. Curr Opin Infections Dis 1991; 4: 491-9.
 
13.
Bedford H, de Louvois J, Halket S, Peckham C, Hurley R, Harvey D. Meningitis in infancy in England and Wales: follow up at age 5 years. BMJ 2001; 323: 533-6.
 
14.
Cabellos C, Martínez-Lacasa J, Tubau F, et al. Evaluation of combined ceftriaxone and dexamethasone therapy in experimental cephalosporin-resistant pneumococcal meningitis. J Antimicrob Chemother 2000; 45: 315-20.
 
15.
Ciana G, Parmar N, Antonio C, Pivetta S, Tamburlini G, Cuttini M. Effectiveness of adjunctive treatment with steroids in reducing short-term mortality in a high-risk population of children with bacterial meningitis. J Trop Pediatr 1995; 41: 164-8.
 
16.
Daoud AS, Batieha A, Al-Sheyyab M, Abuekteish F, Obeidat A, Mahafza T. Lack of effectiveness of dexamethasone in neonatal bacterial meningitis. Eur J Pediatr 1999; 158: 230-3.
 
17.
Fortnum H, Davis A. Hearing impairment in children after bacterial meningitis: incidence and resource implications. Br J Audiol 1993; 27: 43-52.
 
18.
de Gans J, van de Beek D. European dexamethasone in Adulthood Bacterial Meningitis Study Investigators. Dexamethasone in adults with bacterial meningitis. N Engl J Med 2002; 14: 1549-56.
 
19.
Giasuddin AS, Shembesh NM, el-Bargathy SM, Kashbur IM, Rao BN. Levels of serum immunoglobulin G, CSF IgG index in acute meningitis. Br J Biomed Sci 1998; 55: 253-7.
 
20.
Rappaport JM, Bhatt SM, Burkard RF, Merchant SN, Nadol JB Jr. Prevention of hearing loss in experimental pneumococcal meningitis by administration of dexamethasone and ketorolac. J Infect Dis 1999; 179: 264-8.
 
21.
Tolaj I, Dreshaj S, Qehaja E, Tolaj J, Doda-Ejupi T, Mehmeti M. Dexamethasone as adjuvant therapy in the treatment of invasive meningococcal diseases. Med Arch 2010; 64: 228-30.
 
22.
Greenwood BM. Corticosteroids for acute bacterial meningitis. N Engl J Med 2007; 13: 2507-9.
 
23.
Quagliarello VJ, Scheld WM. Treatment of bacterial meningitis. N Engl J Med 1997; 336: 708-16.
 
24.
Syrogiannopoulos GA, Lourida AN, Theodoridou MC, et al. Dexamethasone therapy for bacterial meningitis in children: 2- versus 4-day regimen. J Infect Dis 1994; 169: 853-8.
 
25.
Brouwer MC, McIntyre P, Prasad K, van de Beek D. Corticosteroids for acute bacterial meningitis. Cochrane Database Syst Rev 2015; 12: CD004405.
 
26.
Kobayashi Y, Sunakawa K, Fujita K, et al. Influence of dexamethasone on the clinical course of bacterial meningitis in children. Especially on secondary fever. Experiences in 27 institutions. Kansenshogaku Zasshi 1999; 73: 664-74.
 
27.
Kaplan L, Pesce A. Clinical Chemistry. Theory, Analysis, Correlation. 5th ed. Elsevier Inc; MI: St. Luis 2010; 904-28.
 
28.
Blyth BJ, Farhavar A, Gee C, et al. Validation of serum markers for blood-brain barrier disruption in traumatic brain injury. J Neurotrauma 2009; 26: 1497-507.
 
29.
Bijlsma MW, Brouwer MC, Kasanmoentalib ES, et al. Community-acquired bacterial meningitis in adults in the Netherlands, 2006-14: a prospective cohort study. Lancet Infect Dis 2016; 16: 339-47.
 
30.
Pelkonen T, Roine I, Monteiro L, et al. Prognostic accuracy of five simple scales in childhood bacterial meningitis. Scand J Infect Dis 2012; 44: 557-65.
 
31.
Perdomo-Celis F, Torres MA, Ostos H, et al. Patterns of local and systemic cytokines in bacterial meningitis and its relation with severity and long-term sequelae. Biomark Insights 2015; 20: 125-31.
 
32.
Tan J, Kan J, Qiu G, et al. Clinical prognosis in neonatal bacterial meningitis: the role of cerebrospinal fluid protein. PLoS One 2015; 28: e0141620.
 
33.
Tzanakaki G, Paparoupa M, Kyprianou M, Barbouni A, Eugen-Olsen J, Kourea-Kremastinou J. Elevated soluble urokinase receptor values in CSF, age and bacterial meningitis infection are independent and additive risk factors of fatal outcome. Eur J Clin Microbiol Infect Dis 2012; 31: 1157-62.
 
34.
Hu R, Gong Y, Wang Y. Relationship of serum procalcitonin levels to severity and prognosis in pediatric bacterial meningitis. Clin Pediatr (Phila) 2015; 54: 1141-4.
 
35.
Olaciregui I, Hernández U, Muñoz JA, Emparanza JI, Landa JJ. Markers that predict serious bacterial infection in infants under 3 months of age presenting with fever of unknown origin. Arch Dis Child 2009; 94: 501-5.
 
36.
Roine I, Pelkonen T, Bernardino L, et al. Predictive value of cerebrospinal fluid matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 concentrations in childhood bacterial meningitis. Pediatr Infect Dis J 2014; 33: 675-9.
 
37.
Liu C, Zhao D. Correlation between CD64 and PCT levels in cerebrospinal fluid and degree of hearing impairment sequelae in neonates with purulent meningitis. Exp Ther Med 2017; 14: 5997-6001.
 
38.
Jebamalar AA, Prabhat, Balakrishnapillai AK, Parmeswaran N, Dhiman P, Rajendiran S. Cerebrospinal fluid ferritin and albumin index: potential candidates for scoring system to differentiate between bacterial and viral meningitis in children. Biomarkers 2016; 21: 424-8.
 
39.
Durgawale P, Kanase S, Shukla PS, Sontakke S. A sensitive and economical modified method for estimation of cerebrospinal fluid proteins. Indian J Clin Biochem 2005; 20: 174-7.
 
40.
Croci D, Nespolo A, Bosoni MA, Tarenghi G. A simple immunoturbidimetric method for IgG and albumin quantitation in cerebrospinal fluid and serum. J Clin Chem Clin Biochem 1989; 27: 863-8.
 
41.
Valkov T, Hristova J, Tcherveniakova T, Svinarov D. Blood-brain barrier and intrathecal immune response in patients with neuroinfections. Infez Med 2017; 25: 320-5.
 
ISSN:2451-0637
Journals System - logo
Scroll to top